Supporting information for the article Combinatorial Explosion in Homogeneous Catalysis: Screening 60,000 Crosscoupling reactions

Enrico Burello^[a], David Farrusseng^{[b],*} and Gadi Rothenberg^{[a],*}

^[a] van 't Hoff Institute of Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018
WV Amsterdam, The Netherlands.
^[b] Institut de Recherches sur la Catalyse, CNRS, 2 avenue Albert
Einstein, F-69626, Villeurbanne Cedex, France. E-mail: farrusseng@catalyse.cnrs.fr, gadi@science.uva.nl

Descriptors used in this study

Table S1 shows the number and type of descriptors selected after the Relief and PCA variable selection process. Each reaction is characterized by a set of steric and electronic descriptors pertaining the chemicals involved in the Heck reaction (R_1 , R_2 , ligand and solvent) together with the experimental conditions (catalyst precursor, time, temperature and Pd loading). The Relief algorithm selects descriptors and experimental conditions which display a statistically significant correlation with the responses TON and TOF. The PCA analysis discards redundant descriptors by selecting a set of uncorrelated parameters. This variable selection process reduces the chances of over-learning and gives a simpler model which is easier to interpret.

Starting with 74 descriptors the Relief algorithm selects 26 and 33 descriptors for TON and TOF respectively. The principal component analysis finally reduces the dimensionality to 17 descriptors for TON and 20 for TOF.

		TON		TOF				
Descriptors		Relief	PCA	Relief	PCA			
R ₁								
1	Hammett _m	HOMO	HOMO	Hammett _m	Hammett _{p(+)}			
2	Hammett _p	LUMO	LUMO	Hammett _p	Hammett _{p(-)}			
3	Hammett _{p(+)}	GAP	GAP	Hammett _{p(+)}	V			
4	Hammett _{p(-)}	MW	\mathbf{S}_{occ}	Hammett _{p(-)}				
5	HOMO	S		MW				
6	LUMO	V		S				
7	GAP	А		V				
8	dipole	S _{occ}		A				
9	MW							

Table S1. List of descriptors used by the Relief and the PCA algorithms

10	C							
10	S V							
11	V							
12	Θ							
13	Ω							
14	Ω_{max}							
15	Socc							
16	A							
17	R _{max}							
\mathbf{R}_2								
18	НОМО	LUMO	LUMO	НОМО	НОМО			
19	LUMO	GAP	GAP	LUMO	LUMO			
20	GAP	dipole	dipole	GAP	V			
21	dipole	MW	Α	dipole	S(ethylene)/S			
22	MW	S		MW	Ω			
23	S	V		S	dipole			
24	V	Α		V				
25	Θ			Θ				
26	Ω			S(ethylene)/S				
27	Ω_{max}			Ω_{max}				
28	Socc			S _{occ}				
29	Α			Α				
30	R _{max}			R _{max}				
31	S/S(ethylene)							
Ligand								
32	\mathbf{q}_1	q ₁	q	q ₁	q ₂			
33	q ₂	q ₂	НОМО	q ₂	НОМО			
34	НОМО	HOMO	LUMO	HOMO	LUMO			
35	LUMO	LUMO	GAP	LUMO	Socc			
36	GAP	GAP	Socc	S_{occ}	A			
37	dipole	Ω_{max}		A	R _{max}			
38	MW	Socc		R _{max}				
39	S							
40	V							
41	Θ							
42	Ω							
43	Ω_{max}							
44	Socc							
45	А							
46	R _{max}							

S2

Solvent								
17	n			0	0			
47	11 C	<u>Ч</u>	<u>Ч</u>	SZ max	SZ max			
10	c _r dipole							
50	MW							
51	d ²⁵							
52	U V							
53	ЛН							
54								
55								
56	$\Delta_{\rm H}$							
57	DN							
58	D1 π							
59	HOMO							
60								
61								
62	0							
63	0							
64	S max							
65	A							
66	R							
67	n n n n n n n n n n n n n n n n n n n							
68								
69	$q_{2(-)}$							
70	$\mathbf{q}_{1(+)}$							
70	$\mathbf{q}_{2(+)}$							
Experimental conditions								
71	Cat. precursor	Т	Т	Т	Т			
72	Time	Pd loading	Pd loading	Pd loading	Pd loading			
73	Т	Cat. precursor	Cat. precursor	Cat. precursor	Cat. precursor			
74	Pd loading	· ·		Time	Time			

Set of virtual monophosphine ligands

The following building blocks were used to construct the 61 symmetrical monophosphine ligands with furmula PR_3 *in silico*. the broken lines show the connectivity of the R groups.

S3

