Supporting information for:

Vanadium-catalysed oxidative bromination using dilute mineral acids and hydrogen peroxide: an option for recycling waste acid streams / Gadi Rothenberg and James H. Clark.

As a basis for comparison, it is taken that bromination occurrs either using Br_2 (when present) or HOBr. The interconversions HOBr + HBr \Leftrightarrow Br_2 + H_2O , and Br_2 + Br \Leftrightarrow Br_3 , are disregarded. The calculation of E-factors is based on the theoretical conversion of PhH to PhBr (assuming 100% yield).

Example (1). For the reaction PhH + $Br_2 \Rightarrow PhBr + HBr$, 80.9 g HBr (waste) for every 156.9 g PhBr (product) is produced, ergo E=80.9/156.9 = 0.51.

Example (2). When using $Br_2 + H_2O_2$, the reactions are:

PhH + Br₂
$$\longrightarrow$$
 PhBr + HBr (6)
HBr + H₂O₂ \longrightarrow HOBr + H₂O (7)
PhH + HOBr \longrightarrow PhBr + H₂O (8)
2PhH + Br₂ + H₂O₂ \longrightarrow 2PhBr + 2H₂O (9)

Resulting in 36 g H_2O (waste) for every 313.8 g PhBr (product), ergo E=36/313.8 = 0.11.