Electronic supplementary information for the paper

Predicting adsorption on metals: Simple yet effective descriptors for surface catalysis

Erik-Jan Ras, *^{*a,b*} Manuel J. Louwerse, ^{*a*} Marjo C. Mittelmeijer-Hazeleger^{*a*} and Gadi Rothenberg^{*a*}, *

^a Avantium Technologies B.V. Zekeringstraat 29, 1014BV Amsterdam, The Netherlands. Tel. +31 (0)20 586 8080, Fax. +31 (0)20 586 8085, email: erikjan.ras@avantium.com

^b Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands. Tel. +31 (0)20 525 6963, Fax.+31 (0)20 525 5604, e-mail: g.rothenberg@uva.nl http://www.science.uva.nl/hims/hcsc

This document contains the detailed experimental results, additional information on the models reported in the main text and information required to reproduce the reported models. Specifically, all measured adsorption terms are given, the detailed equations of the obtained models, a separate set of models for hydrogen and hydroxyl radical and details on the specific variables and applications included in each model are provided. The additional information provided for the modeling results are sufficient to provide the reader with the means to reproduce any model reported in the main text.

Measured adsorption isotherms

This section contains all measured adsorption isotherms for the gases (CH₄, CO, CO₂, H₂, N₂, and O₂) and solid materials (bare TiO₂ and 1 wt% Ni, Pt and Rh on the same TiO₂) investigated. The data is grouped per adsorptive gas (CH₄ in Figure S1, CO in Figure S2, CO₂ in Figure S3, H₂ in Figure S4, N₂ in Figure S5 and O₂ in Figure S6). The separate plots allow for the widely different scales at which the adsorption events take place.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Supporting information

Ras et al.

Figure S1 Measured adsorption isotherms for CH₄, as adsorbed volume per unit mass of solid versus p/p_{crit} , for all 4 solid materials (bare TiO₂ and 1 wt% Ni, Pt and Rh on the same TiO₂).

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is O The Owner Societies 2013

Supporting information

Ras et al.

S3

Figure S2 Measured adsorption isotherms for CO, as adsorbed volume per unit mass of solid versus p/p_{crit} , for all 4 solid materials (bare TiO₂ and 1 wt% Ni, Pt and Rh on the same TiO₂).

Ras et al.

Figure S3 Measured adsorption isotherms for CO₂, as adsorbed volume per unit mass of solid versus p/p_{crit} , for all 4 solid materials (bare TiO₂ and 1 wt% Ni, Pt and Rh on the same TiO₂).

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Supporting information

Ras et al.

Figure S4 Measured adsorption isotherms for H₂, as adsorbed volume per unit mass of solid p/p_{crit} , for all 4 solid materials (bare TiO₂ and 1 wt% Ni, Pt and Rh on the same TiO₂).

Ras et al.

Figure S5 Measured adsorption isotherms for N₂, as adsorbed volume per unit mass of solid versus p/p_{crit} , for all 4 solid materials (bare TiO₂ and 1 wt% Ni, Pt and Rh on the same TiO₂).

Ras et al.

Figure S6 Measured adsorption isotherms for O₂, as adsorbed volume per unit mass of solid versus p/p_{crit} , for all 4 solid materials (bare TiO₂ and 1 wt% Ni, Pt and Rh on the same TiO₂).

Equations for best models

Below the coefficients are given for the best models (out of the 27 possibilities, from A1B1C1 to A3B3C3) based on DFT data as indicated in Table 3 in the main text. Each table gives the variable identifier, the scaled model coefficients for comparing the importance of each parameter within a model and the real model coefficients to apply the model to calculate heat of adsorption values. As an example, the full equation for model A1B2C1:

$$\Delta H_{ads} = -7.3122 - 2.4519 \cdot x_4 - 0.0860 \cdot x_5 + 0.0296 \cdot x_7 + 0.0427 \cdot x_1 \cdot x_2 + 0.0115 \cdot x_1 \cdot x_9 - 0.0150 \cdot x_2 \cdot x_7 - 0.0311 \cdot x_2 \cdot x_9 + 0.1591 \cdot x_4 \cdot x_8 + 0.0012 \cdot x_5 \cdot x_6 + 0.0018 \cdot x_7 \cdot x_8$$

 Table S1 Scaled and real coefficients for the best model obtained for the full data set (A1B2C1).

Parameter	Scaled	Real coefficient				
	coefficient					
Intercept	-0.0918243	-7.31229				
x4	-0.0709649	-2.45185				
x5	-0.0595861	-0.0859984				
x7	0.256484	0.0296089				
x1*x2	0.0463655	0.0427118				
x1*x9	0.458749	0.0115422				
x2*x7	-0.531661	-0.0150488				
x2*x9	-0.364033	-0.0311441				
x4*x8	0.234732	0.159055				
x5*x6	0.244552	0.0012333				
x7*x8	0.390236	0.0018444				

Table S2 Scaled and real coefficients for the best model obtained for the data set excluding H_2 (A2B2C1).

Parameter	Scaled	Real coefficient			
	coefficient				
intercept	-0.0263352	-9.89117			
x7	0.0486255	0.0091438			
x9	-0.0319799	-0.0111913			
x1*x7	0.286961	0.0031395			
x1*x9	0.174436	0.0062212			
x2*x5	-0.291259	-0.122037			
x2*x9	-0.231181	-0.0255706			
x4*x7	0.0750419	0.0093469			
x4*x8	0.140208	0.108952			
x4*x9	-0.0232902	-0.0058702			
x5*x7	0.0888695	0.0008441			
x5*x8	0.13099	0.0082944			
x6*x7	0.112894	5.19E-05			
x8*x9	0.0275215	0.0004433			

S9

Parameter	Scaled coefficient	Real coefficient		
intercept	0.010702	-14.3304		
x3	0.107007	0.484081		
x8	0.151839	0.164672		
x9	-0.03308	-0.01067		
x1*x7	0.294707	0.003223		
x1*x9	0.127356	0.004145		
x2*x5	-0.22764	-0.09666		
x2*x6	-0.10331	-0.00235		
x2*x9	-0.20979	-0.0235		
x4*x8	0.186132	0.135114		
x5*x6	0.136066	0.000737		
x5*x8	0.192965	0.011867		
x6*x9	0.064007	9.99E-05		
x8*x9	0.035087	0.000516		

Table S3 Scaled and real coefficients for the best model obtained for the data set excluding H₂ and HO• (A3B2C1).

Individual models for H₂ and HO[•]

The heats of adsorption for H₂ and HO• have been identified as potential outliers in the models describing multiple metals an adsorptives. To demonstrate that the descriptors proposed here are still valid to describe the adsorption of these species, they have been modeled separately using the best combination of descriptors identified (Table S3). Since in this case a model only describes a single adsorptive species, descriptors related to the adsorptive (*x*7, *x*8 and *x*9) have been discarded. The modeling results for H₂ (R^2 = 0.95 and RMSEE = 0.14 eV) and HO• (R^2 = 0.91 and RMSEE = 0.48 eV) are shown in Figure S7 and Figure S8.

Table S4 Model coefficients in real scale for the individual models describing heat of adsorption of H₂ and HO•.

Parameter	Model for H ₂	Model for HO•
intercept	0.8496234	2.9236674
x3	-0.1654974	-0.4563958
x2*x5	-0.0175603	-0.1530765
x2*x6	-0.0037634	-0.0022056
x5*x6	0.0010038	0.0020596

Figure S7 Chemisorption energies of hydrogen derived from DFT (solid bars) and calculated by descriptor model (open bars) for the 13 metals considered.

Figure S8 Chemisorption energies of hydroxyl radical derived from DFT (solid bars) and calculated by descriptor model (open bars) for the 13 metals considered.

Detailed modeling results

This section contains the modeling results detailed to a level sufficient to reproduce any of the models discussed in the main text¹. In the diagram below, the work flow for reproducing a scenario of choice is shown. One simply needs to combine information from Table S5 (data set), Table S6 (variable selection) and (training set selection) and regress a PLS model using one's software of choice to reproduce the models from the main text (main text Table 2). Using an appropriate implementation of the PLS algorithm, regression of a model with the same number of latent variables as indicated in the text will produce a model of similar quality and stability. Due to small differences in the various implementations of the PLS algorithm, small numerical differences in the results can be expected. One aspect in particular to keep in mind is scaling. After partitioning the data into a training and a test set, the training set should be scaled to zero mean and unit variance². The column means and standard deviation obtained in scaling the training set should then be used to scale the validation set. Most commercial software packages will do this automatically.

Diagram 1 Flow chart describing the workflow to reproduce any modeling scenario from the main text

¹ To facilitate the use of the modeling results the tables from this document can also be obtained in Microsoft Excel format from the publishers' website.

² To scale the training set, first calculate the average and standard deviation for each column. The training set data is then scaled by first subtracting the column mean and then dividing by column standard deviation for each entry in a column. To achieve the same scaling for the validation set, apply the procedure above to the validation set using the column means and standard deviations obtained for the training set.

 Table S5 Heat of adsorption (y) and descriptor values (x1-x9) for all 130 metal-adsorptive pairs

	Motal	Adsorptivo	v	v 1	×2	×2	×4	v 5	ve	×7	v9	v 0
			I 1 15	X I 6	245	7.002	1.25	X3 0 10	X0 55 95	X/ 06.00	XO	2
2	Fe Fo		-1.15	0	2.40	7.902	1.20	0.10	55.65	106.04	22.02	47
2	Fe	HO	-4.14	6	2.45	7.902	1.25	8.18	55.85	106.24	21.05	17
3	Fe	N ₂	-1.27	6	2.45	7.902	1.25	8.18	55.85	139.00	21.79	28
4	Fe		-2.53	6	2.45	7.902	1.25	8.18	55.85	147.35	19.43	28
5	Fe	NO	-4.66	6	2.45	7.902	1.25	8.18	55.85	134.87	14.07	30
6	Fe		-6.3	6	2.45	7.902	1.25	8.18	55.85	122.71	13.51	32
/	Fe	H₂O	-1.98	6	2.45	7.902	1.25	8.18	55.85	118.53	19.4	18
8	Fe		-2.51	6	2.45	7.902	1.25	8.18	55.85	165.03	20.96	44
9	Fe	NH ₃	-1.45	6	2.45	7.902	1.25	8.18	55.85	138.04	17.48	17
10	Fe		-1.07	6	2.45	7.902	1.25	8.18	55.85	155.79	21.82	16
11	0		-0.78	7	2.53	7.881	1.26	8.38	58.93	86.98	22.82	2
12	0	HO	-3.43	7	2.53	7.001	1.20	8.38	58.93	100.24	21.05	17
13	00		-0.30	7	2.55	7.001	1.20	0.30	50.93	139.00	21.79	20
14	0	0	-1.51	7	2.55	7.001	1.20	0.30	50.93	147.35	19.43	20
10	00	NO	-3.03	7	2.53	7.001	1.20	0.30	50.93	104.07	14.07	30
10	00		-5.07	7	2.33	7.001	1.20	0.30	50.93	140.52	10.4	32
10	00		-0.99	7	2.33	7.001	1.20	0.30	50.93	165.02	19.4	10
10	00		-0.63	7	2.00	7.001	1.20	0.30	50.93	100.03	20.90	44
19	00		-0.43	7	2.33	7.001	1.20	0.30	50.93	156.04	17.40	16
20	NI		0.09	0	2.00	7.64	1.20	0.30	50.93	100.79	21.02	10
21	INI NG		-0.02	0	2.42	7.04	1.21	7.42	59.69	106.24	22.02	17
22	INI NG		-2.11	0	2.42	7.04	1.21	7.42	50.09	120.66	21.00	17
23	INI NG		-0.1	0	2.42	7.04	1.21	7.42	50.09	147.25	21.79	20
24	INI NG	NO	-1.00	0	2.42	7.04	1.21	7.42	50.09	147.33	19.43	20
20	INI NG		-2.07	0	2.42	7.04	1.21	7.42	50.09	104.07	12.51	30
20	NI NI		-3.9	0 9	2.42	7.04	1.21	7.42	58.60	122.71	10.01	10
21	NI		-0.45	0 9	2.42	7.04	1.21	7.42	58.60	165.03	20.06	10
20	Ni		-0.37	0 8	2.42	7.04	1.21	7.42	58.69	138.04	20.90	44
30	Ni		-0.37	8	2.42	7.64	1.21	7.42	58.60	155 70	21.82	16
31	Cu	H-	-0.10	10	1.81	7 726	1.21	11.01	63 55	86.98	22.82	2
32	Cu		-0.20	10	1.01	7 726	1.30	11.01	63 55	106.24	21.02	17
33	Cu	Na	2.88	10	1.01	7 726	1.30	11.01	63 55	139.66	21.00	28
34	Cu	<u> </u>	1 77	10	1.01	7 726	1.38	11.01	63 55	147.35	19.43	28
35	Cu	NO	-0.68	10	1.01	7 726	1.38	11.01	63.55	134 87	14 07	30
36	Cu		-2.51	10	1.81	7 726	1.38	11.01	63.55	122 71	13.51	32
37	Cu	H ₂ O	0.78	10	1.81	7 726	1.38	11.01	63.55	118.53	19.01	18
38	Cu	CO ₂	3.69	10	1.81	7 726	1.38	11.01	63.55	165.03	20.96	44
39	Cu	NH ₂	1.92	10	1.81	7 726	1.38	11.01	63.55	138.04	17 48	17
40	Cu	CH	3.06	10	1.81	7 726	1.38	11.01	63.55	155 79	21.82	16
41	Mo		-0.92	5	2.96	7 092	1.00	12 77	95.94	86.98	22.82	2
42	Mo	HO•	-4.61	5	2.96	7.092	1.45	12.77	95.94	106.24	21.05	17
43	Мо	N ₂	-2.76	5	2.96	7.092	1.45	12.77	95.94	139.66	21.79	28
44	Мо	co	-3.61	5	2.96	7.092	1.45	12.77	95.94	147.35	19.43	28
45	Мо	NO	-5.99	5	2.96	7.092	1.45	12.77	95.94	134.87	14.07	30
46	Мо	O ₂	-7.48	5	2.96	7.092	1.45	12.77	95.94	122.71	13.51	32
47	Мо	H ₂ O	-2.33	5	2.96	7.092	1.45	12.77	95.94	118.53	19.4	18
48	Мо	CO ₂	-4.18	5	2.96	7.092	1.45	12.77	95.94	165.03	20.96	44
49	Мо	NH ₃	-1.84	5	2.96	7.092	1.45	12.77	95.94	138.04	17.48	17
50	Мо	CH ₄	-1.09	5	2.96	7.092	1.45	12.77	95.94	155.79	21.82	16
51	Ru	H ₂	-1.09	7	3.05	7.36	1.26	8.38	101.07	86.98	22.82	2
52	Ru	HO•	-3.27	7	3.05	7.36	1.26	8.38	101.07	106.24	21.05	17
53	Ru	N ₂	-0.84	7	3.05	7.36	1.26	8.38	101.07	139.66	21.79	28
54	Ru	CO	-1.62	7	3.05	7.36	1.26	8.38	101.07	147.35	19.43	28
55	Ru	NO	-3.6	7	3.05	7.36	1.26	8.38	101.07	134.87	14.07	30
56	Ru	O ₂	-4.62	7	3.05	7.36	1.26	8.38	101.07	122.71	13.51	32
57	Ru	H ₂ O	-1.08	7	3.05	7.36	1.26	8.38	101.07	118.53	19.4	18
58	Ru	CO ₂	-0.77	7	3.05	7.36	1.26	8.38	101.07	165.03	20.96	44
59	Ru	NH ₃	-1.14	7	3.05	7.36	1.26	8.38	101.07	138.04	17.48	17
60	Ru	CH ₄	-0.88	7	3.05	7.36	1.26	8.38	101.07	155.79	21.82	16
61	Rh	H ₂	-0.79	8	2.68	7.459	1.35	10.31	102.91	86.98	22.82	2

ID	Metal	Adsorptive	У	x1	x2	x3	x4	x5	x6	x7	x8	x9
63	Rh	N ₂	-0.7	8	2.68	7.459	1.35	10.31	102.91	139.66	21.79	28
64	Rh	CO	-1.12	8	2.68	7.459	1.35	10.31	102.91	147.35	19.43	28
65	Rh	NO	-3 23	8	2.68	7 459	1.35	10.31	102 91	134 87	14 07	30
66	Dh	0	4.03	0	2.60	7.450	1.00	10.01	102.01	122.71	13.51	32
67	Dh		-4.00	0	2.00	7.450	1.00	10.31	102.91	110 52	10.01	10
07		H ₂ O	-0.40	0	2.00	7.409	1.35	10.31	102.91	110.00	19.4	10
68	RN		0.03	8	2.68	7.459	1.35	10.31	102.91	165.03	20.96	44
69	Rh	NH ₃	-0.61	8	2.68	7.459	1.35	10.31	102.91	138.04	17.48	17
70	Rh	CH₄	-0.06	8	2.68	7.459	1.35	10.31	102.91	155.79	21.82	16
71	Pd	H ₂	-0.78	10	2.03	8.337	1.31	9.42	106.42	86.98	22.82	2
72	Pd	HO•	-1.4	10	2.03	8.337	1.31	9.42	106.42	106.24	21.05	17
73	Pd	N ₂	1.78	10	2.03	8.337	1.31	9.42	106.42	139.66	21.79	28
74	Pd	CO	0.38	10	2.03	8.337	1.31	9.42	106.42	147.35	19.43	28
75	Pd	NO	-0.58	10	2.03	8.337	1.31	9.42	106.42	134.87	14.07	30
76	Pd	0,	-12	10	2 03	8 3 37	1 31	9 4 2	106 42	122 71	13 51	32
77	Pd	H ₂ O	0.95	10	2.03	8 3 37	1.31	9.42	106 42	118 53	19.4	18
78	Pd	<u> </u>	2.06	10	2.00	8 337	1.01	0.42	106.42	165.03	20.96	10
70	D d		2.30	10	2.03	0.007	1.01	0.42	106.42	129.04	17 40	44
19	FU Dd		0.04	10	2.03	0.337	1.01	9.42	100.42	150.04	01.00	16
00	Pu		0.04	10	2.03	0.337	1.31	9.42	100.42	155.79	21.02	10
81	Ag	H ₂	0.53	10	1.28	7.576	1.53	15	107.87	86.98	22.82	2
82	Ag	HU•	-0.48	10	1.28	1.5/6	1.53	15	107.87	106.24	21.05	1/
83	Ag	N ₂	5.86	10	1.28	7.576	1.53	15	107.87	139.66	21.79	28
84	Ag	CO	4.32	10	1.28	7.576	1.53	15	107.87	147.35	19.43	28
85	Ag	NO	1.73	10	1.28	7.576	1.53	15	107.87	134.87	14.07	30
86	Ag	O ₂	-0.65	10	1.28	7.576	1.53	15	107.87	122.71	13.51	32
87	Ag	H ₂ O	2.52	10	1.28	7.576	1.53	15	107.87	118.53	19.4	18
88	Aa	CO ₂	7.16	10	1.28	7.576	1.53	15	107.87	165.03	20.96	44
89	Aa	NH ₃	4.63	10	1.28	7.576	1.53	15	107.87	138.04	17.48	17
90	Δα	CH	6.31	10	1.28	7 576	1.53	15	107.87	155 79	21.82	16
Q1	W	H-	_1 29	4	3.47	7.070	1.00	13.04	103.84	86.98	22.82	2
02	\//		5.27	4	3.47	7.00	1.40	13.04	103.04	106.30	21.02	17
92	VV \\/	N	-0.07	4	2.47	7.90	1.40	12.04	103.04	120.66	21.00	17
93	VV	N ₂	-4.33	4	3.47	7.90	1.40	13.04	103.04	139.00	21.79	20
94	VV	0	-4.73	4	3.47	7.98	1.46	13.04	103.84	147.35	19.43	28
95	W	NO	-7.34	4	3.47	7.98	1.46	13.04	103.84	134.87	14.07	30
96	W	O ₂	-8.62	4	3.47	7.98	1.46	13.04	103.84	122.71	13.51	32
97	W	H₂O	-3.27	4	3.47	7.98	1.46	13.04	103.84	118.53	19.4	18
98	W	CO ₂	-5.87	4	3.47	7.98	1.46	13.04	103.84	165.03	20.96	44
99	W	NH₃	-3.18	4	3.47	7.98	1.46	13.04	103.84	138.04	17.48	17
100	W	CH₄	-2.37	4	3.47	7.98	1.46	13.04	103.84	155.79	21.82	16
101	lr	H ₂	-1.26	7	3.03	9.1	1.37	10.77	192.22	86.98	22.82	2
102	Ir	HO•	-3.37	7	3.03	9.1	1.37	10.77	192.22	106.24	21.05	17
103	lr	Na	-0.59	7	3.03	91	1.37	10 77	192 22	139.66	21 79	28
104	lr	<u> </u>	-1.07	7	3.03	91	1.37	10.77	192 22	147.35	19.43	28
105	lr	NO	-3.40	7	3.03	Q 1	1.37	10.77	102.22	134.87	14.07	30
106	'' Ir	0.	_4 65	7	3.03	9.1	1.37	10.77	102.22	122 71	13.51	32
100	ll Ir		-4.00	7	2.03	9.1	1.37	10.77	192.22	140 52	10.4	10
107	ll Ir	112U	-1.20	7	3.03	9.1	1.37	10.77	102.22	165.00	19.4	10
108			-0.23	7	3.03	9.1	1.3/	10.77	192.22	105.03	20.90	44
109	Ir	NH₃	-1.27	/	3.03	9.1	1.3/	10.77	192.22	138.04	17.48	17
110	lr Tr	CH ₄	-0.65	7	3.03	9.1	1.37	10.77	192.22	155.79	21.82	16
111	Pt	H ₂	-1.12	9	2.48	9	1.28	8.78	195.08	86.98	22.82	2
112	Pt	HO•	-2.06	9	2.48	9	1.28	8.78	195.08	106.24	21.05	17
113	Pt	N ₂	1.37	9	2.48	9	1.28	8.78	195.08	139.66	21.79	28
114	Pt	CO	0.37	9	2.48	9	1.28	8.78	195.08	147.35	19.43	28
115	Pt	NO	-1.27	9	2.48	9	1.28	8.78	195.08	134.87	14.07	30
116	Pt	O ₂	-2.17	9	2.48	9	1.28	8.78	195.08	122.71	13.51	32
117	Pt	 H₂O	0.12	9	2.48	9	1.28	8.78	195 08	118 53	19.4	18
118	Pt	CO ₂	2.45	9	2.48	9	1.28	8.78	195.08	165.03	20.96	44
110	Pt	NH ₂	-0.08	q	248	9	1.28	8.78	195.00	138.04	17 48	17
120	Dt	СН	-0.00	0	2.40	9	1.20	8.79	105.00	155.04	21 92	16
120			-0.10	3	2.40	9	1.20	12 54	106.07	06.00	21.02	2
121	Au		0.10	10	1.03	9.220	1.44	12.51	190.97	00.98	22.82	47
122	Au	HU•	-0.05	10	1.53	9.226	1.44	12.51	196.97	106.24	21.05	17
123	Au	N ₂	5.89	10	1.53	9.226	1.44	12.51	196.97	139.66	21.79	28
124	Au	CO	4.58	10	1.53	9.226	1.44	12.51	196.97	147.35	19.43	28
125	Au	NO	2.34	10	1.53	9.226	1.44	12.51	196.97	134.87	14.07	30
126	Au	O ₂	0.54	10	1.53	9.226	1.44	12.51	196.97	122.71	13.51	32
127	Au	H ₂ O	2.77	10	1.53	9.226	1.44	12.51	196.97	118.53	19.4	18

S14

ID	Metal	Adsorptive	у	x1	x2	x3	x4	x5	x6	х7	x8	x9
128	Au	CO ₂	8.02	10	1.53	9.226	1.44	12.51	196.97	165.03	20.96	44
129	Au	NH₃	4.12	10	1.53	9.226	1.44	12.51	196.97	138.04	17.48	17
130	Au	CH ₄	5.28	10	1.53	9.226	1.44	12.51	196.97	155.79	21.82	16