SUPPORTING INFORMATION A

A.1. Mass transfer limitations

Catalytic propane dehydrogenation requires two diffusion steps: 1) to the catalyst surface (external diffusion); and 2) within the catalyst pores (internal diffusion). The measurement of the reaction kinetics is compromised if the rate of mass transfer is lower than that of the chemical step or there is not an effective heat transfer. ${ }^{[1,2]}$ We checked the absence of external and internal mass transfer limitations following standard experimental criteria by increasing the overall volumetric flow rate (q) and decreasing the catalyst particle size (d) at constant $\left(W / F_{A 0}\right){ }^{[3,4]}$ Figure A1 shows the results where $X_{A 0}$ reaches a plateau at $q \geq 80 \mathrm{~cm}^{3} \min ^{-1}$ and $d \leq 200 \mu \mathrm{~m}$. This is indicative of operation under chemical control.

Figure A1: Variation of initial propane fractional conversion $\left(X_{A 0}\right)$ with the total inlet volumetric flow rate (q) for reaction over $\mathrm{Pt}-\mathrm{Sn} / \mathrm{Al}_{2} \mathrm{O}_{3}$ at $d=150 \mu \mathrm{~m}$. Inset: variation of $X_{A 0}$ with the catalyst particle size (d) at $q=80 \mathrm{~cm}^{3} \mathrm{~min}^{-1} .\left(W / F_{A 0}\right)=0.04 \mathrm{~g} \mathrm{~h} \mathrm{~mol}^{-1}$

A.2. Heat transport limitations

This section presents all necessary steps and calculations in order to demonstrate that the reactions have been conducted in a regime free from heat transport limitations. Table A1 shows the reaction conditions (in terms of partial pressures/molar fractions and temperature) and the initial propane consumption rate for each experiment.

A.2.1. Estimation of the reacting fluid density $\left(\rho_{\text {mix }}, \mathrm{kg} \mathrm{m}^{-3}\right)$

The density of the reacting fluid mixture is

$$
\begin{gather*}
\rho_{\text {mix }}=M_{\text {mix }} / \bar{V}_{\text {mix }} \tag{A1}\\
M_{\text {mix }}=\sum_{i=1}^{n}\left(y_{i} \times M_{i}\right) \tag{A2}
\end{gather*}
$$

where $M_{m i x}$ and M_{i} are the average molecular weight of the fluid and compound i (g mol^{-1}) and y_{i} is the molar fraction of compound $i . \bar{V}_{\text {mix }}$ is the molar volume of the fluid:

$$
\begin{equation*}
\bar{V}_{m i x}=\left(Z_{m i x} \times R_{g} \times T\right) / P \tag{A3}
\end{equation*}
$$

where P is the pressure $\left(101330 \mathrm{~N} \mathrm{~m}^{-2}\right), T$ is the temperature (K) and R_{g} is the ideal gas constant ($8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$). $Z_{\text {mix }}$ is the compressibility factor of the fluid:

$$
\begin{equation*}
Z_{m i x}=Z_{m i x}^{(0)}+\omega_{m i x} \times Z_{m i x}^{(1)} \tag{A4}
\end{equation*}
$$

where $\omega_{m i x}$ is the fluid acentric factor

$$
\begin{equation*}
\omega_{\operatorname{mix}}=\sum_{i=1}^{n}\left(y_{i} \times \omega_{i}\right) \tag{A5}
\end{equation*}
$$

ω_{i} is the acentric factor of compound i and $Z_{m i x}{ }^{(0)}$ and $Z_{m i x}{ }^{(1)}$ are acentric contributions to $Z_{m i x}$ which are found graphically using the fluid reduced temperature ($T_{r, m i x}$) and pressure $\left(P_{r, m i x}\right)$

$$
\begin{align*}
& T_{r, m i x}=T / T_{c, \text { mix }} \tag{A6}\\
& P_{r, \text { mix }}=P / P_{c, \text { mix }} \tag{A7}
\end{align*}
$$

The values of $T_{c, \text { mix }}$ (the fluid critical temperature, K) and $P_{c, \text { mix }}$ (the fluid critical pressure, $\mathrm{N} \mathrm{m}^{-2}$) are calculated from

$$
\begin{equation*}
T_{c, m i x}=\sum_{i=1}^{n}\left(y_{i} \times T_{c, i}\right) \tag{A8}
\end{equation*}
$$

$$
\begin{equation*}
P_{c, \text { mix }}=\frac{T_{c, \text { mix }} \times R_{g} \times \sum_{i=1}^{n}\left(y_{i} \times Z_{c, i}\right)}{\sum_{i=1}^{n}\left(y_{i} \times \bar{V}_{c, i}\right)} \tag{A9}
\end{equation*}
$$

where $T_{c, i}$ is the critical temperature of compound $i(\mathrm{~K}), \bar{V}_{c, i}$ is the critical molar volume of compound $i\left(\mathrm{~m}^{3} \mathrm{~mol}^{-1}\right) . Z_{c, i}$ is the critical compressibility factor of compound i,

$$
\begin{equation*}
Z_{c, i}=\frac{\bar{V}_{c, i} \times P_{c, i}}{T_{c, i} \times R_{g}} \tag{A10}
\end{equation*}
$$

where $P_{c, i}$ is the critical pressure of compound $i\left(\mathrm{~N} \mathrm{~m}^{-2}\right)$. The critical constants $\left(T_{c, i}\right.$, $P_{c, i}$ and $\bar{V}_{c, i}$) and acentric factors $\left(\omega_{i}\right)$ where taken from reference literature ${ }^{[5]}$ or estimated by group contribution methods, as established elsewhere. ${ }^{[6]}$ The values of $\rho_{m i x}$ at each experimental condition can be found in Table A2.

A.2.2. Estimation of the reacting fluid dynamic viscosity ($\mu_{\text {mix }}, \mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$)

The dynamic viscosity of the reacting fluid mixture is

$$
\begin{equation*}
\mu_{m i x}=\sum_{i=1}^{n}\left(\frac{y_{i} \times \mu_{i}}{\sum_{j=1}^{n}\left(y_{j} \times \phi_{i j}\right)}\right) \tag{A11}
\end{equation*}
$$

where $\phi_{i j}$ is an interaction parameter

$$
\begin{gather*}
\phi_{i j}=\frac{\left(1+\left(\mu_{i} / \mu_{j}\right)^{1 / 2} \times\left(M_{j} / M_{i}\right)^{1 / 4}\right)^{2}}{\left(8 \times\left(1+M_{i} / M_{j}\right)\right)^{1 / 2}} \tag{A12}\\
\phi_{j i}=\phi_{i j} \times\left(M_{i} / M_{j}\right) \times\left(\mu_{j} / \mu_{i}\right) \tag{A13}
\end{gather*}
$$

and μ_{i} is the dynamic viscosity of compound $i\left(\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)$. The latter was found graphically ${ }^{[6]}$ (in cP) for each compound at different temperatures ($573 \mathrm{~K}-823 \mathrm{~K}$) and fitted to

$$
\begin{align*}
& \mu_{\text {Propane }}=\left(2.40 \times 10^{-5}\right) \times T+\left(1.35 \times 10^{-3}\right) \tag{A14}\\
& \mu_{\text {Propene }}=\left(2.82 \times 10^{-5}\right) \times T+\left(0.48 \times 10^{-3}\right) \tag{A15}\\
& \mu_{H_{2}}=\left(1.34 \times 10^{-5}\right) \times T+\left(6.20 \times 10^{-3}\right) \tag{A16}
\end{align*}
$$

$$
\begin{equation*}
\mu_{A r}=\left(5.23 \times 10^{-5}\right) \times T+\left(8.23 \times 10^{-3}\right) \tag{A17}
\end{equation*}
$$

The values of $\mu_{\text {mix }}$ at each experimental condition can be found in Table A2.

A.2.3. Estimation of the reacting fluid heat capacity $\left(\mathrm{C}_{\mathrm{p}, \text { mix }}, \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$

The heat capacity of the reacting fluid mixture is

$$
\begin{gather*}
C_{p, \text { mix }}=\sum_{i=1}^{n}\left(y_{i} \times C_{p, i}\right) \tag{A18}\\
C_{p, i}=A+B \times T+C \times T^{2}+D \times T^{3}+E \times T^{4} \tag{A19}
\end{gather*}
$$

where $C_{p, i}$ are the heat capacities of compound $i\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ and the constants (A-E) were found elsewhere ${ }^{[5]}$ (range of validity: $50 \mathrm{~K}-1000 \mathrm{~K}$) and are listed in Table A3. Table A2 presents the values of $C_{p, m i x}$ at each experimental conditions.

A.2.4. Estimation of the reacting fluid thermal conductivity ($\lambda_{\text {mix }}, \mathrm{J} \mathrm{K}^{-1} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$)

The thermal conductivity of the reacting fluid mixture is

$$
\begin{equation*}
\lambda_{\text {mix }}=\sum_{i=1}^{n}\left(\frac{y_{i} \times \lambda_{i}}{\sum_{j=1}^{n}\left(y_{i} \times A_{i j}\right)}\right) \tag{A20}
\end{equation*}
$$

where λ_{i} is the thermal conductivity of compound $i\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)$ and $A_{i j}$ is an interaction parameter

$$
\begin{gather*}
A_{i j}=\frac{\left(1+\left(g_{i} / g_{j}\right)^{1 / 2} \times\left(M_{j} / M_{i}\right)^{1 / 4}\right)^{2}}{\left(8 \times\left(1+M_{i} / M_{j}\right)\right)^{1 / 2}} \tag{A21}\\
\frac{g_{i}}{g_{j}}=\left(\frac{f\left(T_{r, i}\right)}{f\left(T_{r, j}\right)}\right) \times\left(\frac{\Gamma_{j}}{\Gamma_{i}}\right) \tag{A22}\\
f\left(T_{r, i}\right)=\exp \left(0.0464 \times T_{r, i}\right)-\exp \left(-0.2412 \times T_{r, i}\right) \tag{A23}\\
\Gamma_{i}=\left(T_{c, i}\right)^{1 / 6} \times\left(P_{c, i}\right)^{-2 / 3} \times\left(M_{i}\right)^{1 / 2} \tag{A24}
\end{gather*}
$$

The estimation of λ_{i} is dependent on the nature of the compound, ${ }^{[6]}$ drawing on the method of Thodos for propane and propene (eqn. (A25)) and the averaged Eucken correction for H_{2} and Ar (eqns. (A26-A28)).

$$
\begin{gather*}
\lambda_{i}=\frac{\left(14.52 \times T_{r, i}-5.14\right)^{3 / 2} \times C_{p, i} \times 10^{-6}}{\Gamma_{i}} \tag{A25}\\
\bar{\lambda}_{i}=\left(\lambda_{\text {Eucken1 }}+\lambda_{\text {Eucken2 } 2}\right) / 2 \tag{A26}\\
\lambda_{\text {Eucken1 }}=\left(\mu_{i} / M_{i}\right)\left[C_{p, i}-R_{g}+4.47\right] \tag{A27}\\
\lambda_{\text {Eucken2 } 2}=\left(\mu_{i} / M_{i}\right)\left[\left(C_{p, i}-R_{g}\right) \times 1.32+3.52\right] \tag{A28}
\end{gather*}
$$

The values of $\lambda_{\operatorname{mix}}$ at each experimental condition can be found in Table A2.

A.2.5. Estimation of propane diffusivity in the reacting fluid ($\mathrm{D}_{\mathrm{A}, \text { mix }}, \mathrm{m}^{2} \mathrm{~s}^{-1}$)

The diffusivity of propane in the reacting fluid mixture is

$$
\begin{equation*}
D_{A, \text { mix }}=\sum_{i=1}^{n}\left(\frac{1}{y_{j} / D_{A, j}}\right) \tag{A29}
\end{equation*}
$$

where $D_{A, j}$ is the diffusivity of propane in component j and can be estimated from the Chapman-Enskog relationship (in $\mathrm{cm}^{2} \mathrm{~s}^{-1}$)

$$
\begin{align*}
D_{A, j} & =\frac{0.00266 \times T^{3 / 2}}{P \times M_{A j}^{1 / 2} \times \sigma_{A j}^{2} \times \Omega_{D}} \tag{A30}\\
M_{A j} & =\frac{2}{\left(1 / M_{A}\right)-\left(1 / M_{j}\right)} \tag{A31}\\
\sigma_{A j} & =\left(\sigma_{A}+\sigma_{j}\right) / 2 \tag{A32}
\end{align*}
$$

The value of Ω_{D}, the diffusion collision integral, can be calculated from

$$
\begin{align*}
\Omega_{D}=\frac{1.06036}{\left(T^{*}\right)^{0.1561}}+\frac{0.193}{\exp \left(0.47635 \times T^{*}\right)} & +\frac{1.03587}{\exp \left(1.52996 \times T^{*}\right)}+\frac{1.76474}{\exp \left(3.89411 \times T^{*}\right)} \tag{A33}\\
T^{*} & =T \times(k / \varepsilon)_{A j} \tag{A34}\\
(k / \varepsilon)_{A j}= & {\left[(k / \varepsilon)_{A} \times(k / \varepsilon)_{j}\right]^{1 / 2} } \tag{A35}
\end{align*}
$$

Data for $\sigma_{i}(\AA)$ and $(\varepsilon / k)_{i}(\mathrm{~K})$ can be found in the literature ${ }^{[5]}$ and Table A2 presents the values of $D_{A, m i x}$ for each experimental point.

A.2.6. Estimation of the fluid-to-catalyst heat transfer coefficient $\left(\mathrm{h}, \mathrm{J} \mathrm{K}^{-1} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)$

The fluid-to-catalyst heat transfer coefficient is calculated from

$$
\begin{array}{ll}
\left(\frac{h \times d_{p}}{\lambda_{\text {mix }}}\right)=\left(\frac{0.428}{\varepsilon_{b}}\right) \times \operatorname{Re}^{0.641} \times \operatorname{Pr}^{1 / 3} & 3<\operatorname{Re}<2000 \tag{A36}\\
\left(\frac{h \times d_{p}}{\lambda_{\text {mix }}}\right)=0.07 \times \operatorname{Re} & 0.1<\operatorname{Re}<10
\end{array}
$$

where d_{p} is the catalyst particle size $(150 \mu \mathrm{~m}), \varepsilon_{b}$ is the bed porosity ($c a .0 .5$ based on Hg and He porosimetry measurements). Re and Pr are the Reynolds and Prandtl dimensionless numbers and estimated as

$$
\begin{gather*}
\operatorname{Re}=\frac{u_{\text {mix }} \times d_{p} \times \rho_{\text {mix }}}{\mu_{\text {mix }}} \tag{A37}\\
\operatorname{Pr}=\frac{\mu_{\text {mix }} \times C_{p, \text { mix }}}{\lambda_{\text {mix }}} \tag{A38}
\end{gather*}
$$

where the velocity $u_{\text {mix }}$ is $0.11 \mathrm{~m} \mathrm{~s}^{-1}$ (i.e. $80 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ of reacting fluid flowing through a 4 mm i.d. reactor). The values of h for each experiment are gathered in Table A4

A.2.7. Estimation of the propane mass transfer coefficient $\left(\mathrm{k}_{\mathrm{f}_{2}} \mathrm{~m} \mathrm{~s}^{-1}\right)$

The propane mass transfer coefficient is calculated from

$$
\begin{array}{ll}
\left(\frac{k_{f} \times d_{p}}{D_{A, \text { mix }}}\right)=\left(\frac{0.357}{\varepsilon_{b}}\right) \times \operatorname{Re}^{0.641} \times \mathrm{Sc}^{1 / 3} & 3<\mathrm{Re}<2000 \tag{A39}\\
\left(\frac{k_{f} \times d_{p}}{D_{A, \text { mix }}}\right)=0.07 \times \operatorname{Re} & 0.1<\operatorname{Re}<10
\end{array}
$$

where the Schmidt number (Sc) can be estimated as

$$
\begin{equation*}
\mathrm{Sc}=\frac{\mu_{\text {mix }}}{\rho_{\text {mix }} \times D_{A, \text { mix }}} \tag{A40}
\end{equation*}
$$

The values of k_{f} for each experiment are given in Table A4.

A.2.8. External heat transfer criterion

The criterion for external heat transfer limitations is

$$
\begin{gather*}
\left(\frac{E a}{R_{g} \times T}\right) \times\left(\frac{\|\Delta \bar{H}\| \times k_{f} \times C_{b}}{h \times T}\right) \times\left(\frac{r_{0}{ }^{\prime}}{a \times k_{f} \times C_{b}}\right)<0.05 \tag{A41}\\
\Delta \bar{H}=\left(6.97 \times 10^{-9}\right) \times T^{3}+\left(-2.69 \times 10^{-5}\right) \times T^{2}+\left(3.25 \times 10^{-2}\right) \times T+116.78 \tag{A42}
\end{gather*}
$$

$$
\begin{equation*}
C_{b}=\frac{P_{A}}{R_{g} \times T} \tag{A43}
\end{equation*}
$$

where $\left(E a / R_{g}\right)$ is $1593 \mathrm{~K}, \Delta \bar{H}$ is the specific reaction enthalpy ($\mathrm{kJ} \mathrm{mol}^{-1}$, eqn. (A42)), C_{b} is the concentration of propane in the reacting fluid ($\mathrm{mol} \mathrm{m}^{-3}$, eqn. (A43)) and $a=$ $6 / d_{p} . r_{0}$ ' is the propane consumption rate $\left(\mathrm{mol} \mathrm{s}^{-1} \mathrm{~m}^{-3}\right)$

$$
\begin{equation*}
r_{0}{ }^{\prime}=r_{0} \times \rho_{\text {Skeletal }} \tag{A44}
\end{equation*}
$$

where r_{0} is the propane consumption rate in $\mathrm{mol} \mathrm{s}^{-1} \mathrm{~kg}^{-1}$ and $\rho_{\text {Skeletal }}=1606 \mathrm{~kg} \mathrm{~m}^{-3}$, as estimated from He porosimetry. The results presented in Table A4 demonstrate that the reactions were run in absence of external heat transport limitations at all conditions during the study.

A.2.9. Internal heat transfer criterion

The criterion for internal heat transfer limitations is

$$
\begin{equation*}
\left(\frac{E a}{R_{g} \times T}\right) \times\left(\frac{\|\Delta \bar{H}\| \times D_{A, \text { mix }} \times C_{s}}{\lambda_{\text {Catalyst }} \times T}\right) \times\left(\frac{r_{0}{ }^{\prime} \times L^{2}}{D_{A, \text { mix }} \times C_{s}}\right)<0.1 \tag{A45}
\end{equation*}
$$

where $\lambda_{\text {Catalyst }}$ is the effective thermal conductivity of the catalyst $\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)$, taken as equal to that from the $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ support and drawing from reference literature ${ }^{[5]}$

$$
\begin{equation*}
\lambda_{\text {Catalyst }}=16896 \times T^{-1.0793} \tag{A46}
\end{equation*}
$$

C_{s} is the concentration of propane at the catalyst surface (which is taken as equal to C_{b} for absence of limitations) and $L=d_{p} / 6$. The results presented in Table A4 demonstrate that the reactions were run in absence of internal heat transport limitations at all conditions during the study.

References

[1] S. Gómez-Quero, F. Cárdenas-Lizana, M. A. Keane, AIChE J. 2009, 56, 756.
[2] G. F. Froment, K. B. Bischoff, J. de Wilde, Chemical Reactor Analysis and Design, John Wiley \& Sons., Hoboken, 2011.
[3] L. Forni, Catal. Today 1997, 34, 353.
[4] C. Perego, S. Peratello, Catal.Today 1999, 52, 133.
[5] B. E. Poling, J. M. Prausnitz, J. P. O'connell, The Properties of Gases and Liquids, McGraw-Hill, New York, 2001.

Electronic Supplementary Material (ESI) for Catalysis Science \& Technology
[6] R. H. Perry, D. W. Green, Perry's Chemical Engineering' Handbook, McGraw-Hill, New York, 1973.

Table A1: Experimental conditions (in terms of partial pressure of compound i and temperature) and initial propane consumption rate.

Experiment	$\begin{gathered} P_{A O} \\ \text { (atm) } \end{gathered}$	$\begin{gathered} \boldsymbol{P}_{E O} \\ (\mathbf{a t m}) \end{gathered}$	$\begin{gathered} \boldsymbol{P}_{\text {HO }} \\ (\mathbf{a t m}) \end{gathered}$	$\begin{gathered} \boldsymbol{P}_{R 0} \\ \text { (atm) } \end{gathered}$	$\begin{gathered} \boldsymbol{T} \\ (\mathbf{K}) \end{gathered}$	$\left(\mathbf{m o l}^{-1} \mathbf{r}_{0} \mathbf{g}^{-1} \mathbf{h}^{-1}\right)$
1	0.125	0	0	0.875		0.595
2	0.250	0	0	0.750		1.268
3	0.375	0	0	0.625		1.522
4	0.500	0	0	0.500		1.812
5	0.625	0	0	0.375		2.086
6	0.750	0	0	0.250		2.282
7	0.875	0	0	0.125		2.749
8	0.125	0.125	0	0.750		0.522
9	0.125	0.250	0	0.625		0.460
10	0.125	0.375	0	0.500		0.405
11	0.125	0.500	0	0.375	723	0.325
12	0.125	0.625	0	0.250		0.292
13	0.125	0.750	0	0.125		0.275
14	0.125	0.875	0	0		0.166
15	0.125	0	0.125	0.750		0.503
16	0.125	0	0.250	0.625		0.479
17	0.125	0	0.375	0.500		0.540
18	0.125	0	0.50	0.375		0.559
19	0.125	0	0.625	0.250		0.650
20	0.125	0	0.750	0.125		0.632
21	0.125	0	0.875	0		0.828
22	0.0625	0	0	0.9375		0.620
23	0.125	0	0	0.875		1.271
24	0.1875	0	0	0.8125		1.677
25	0.250	0	0	0.750		2.068
26	0.3125	0	0	0.6875		2.172
27	0.375	0	0	0.625		2.295
28	0.500	0	0	0.500		2.450
29	0.625	0	0	0.375		2.822
30	0.750	0	0	0.250		2.990
31	0.875	0	0	0.125		3.251
32	0.125	0.125	0	0.750		1.214
33	0.125	0.250	0	0.625		0.979
34	0.125	0.300	0	0.575	823	0.776
35	0.125	0.375	0	0.500		0.598
36	0.125	0.500	0	0.375		0.552
37	0.125	0.625	0	0.250		0.385
38	0.125	0.750	0	0.125		0.417
39	0.125	0.875	0	0		0.287
40	0.125	0	0.125	0.750		1.126
41	0.125	0	0.250	0.625		1.092
42	0.125	0	0.375	0.500		1.136
43	0.125	0	0.50	0.375		1.246
44	0.125	0	0.625	0.250		1.311
45	0.125	0	0.750	0.125		1.338
46	0.125	0	0.875	0		1.467

Table A2: Physico-chemical properties of the reacting fluid at the stated reaction conditions (see Table 2).

Experiment	$\underset{\left(\mathbf{k g ~ m}^{-3}\right)}{\rho_{\operatorname{mix}}}$	$\underset{\left(\mathrm{kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)}{\mu_{m i x} \times 10^{5}}$	$\begin{gathered} \boldsymbol{C}_{p, \text { mix }} \\ \left(\mathbf{J ~ K}^{-1} \text { mol }^{-1}\right) \end{gathered}$	$\begin{gathered} \lambda_{m i x} \\ \left(\mathbf{J ~ K}^{-1} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right) \end{gathered}$	$\begin{aligned} & D_{A, m i x} \times 10^{4} \\ & \left(\mathrm{~m}^{2} \mathrm{~s}^{-1}\right) \end{aligned}$
1	0.68	3.99	36.4	0.043	0.57
2	0.69	3.50	52.1	0.050	0.67
3	0.70	3.10	67.7	0.056	0.80
4	0.71	2.76	83.4	0.062	1.01
5	0.72	2.48	99.0	0.067	1.34
6	0.72	2.25	114.7	0.072	2.01
7	0.73	2.05	130.3	0.077	4.02
8	0.69	3.58	49.1	0.051	0.54
9	0.69	3.22	61.7	0.058	0.50
10	0.69	2.92	74.4	0.064	0.47
11	0.70	2.66	87.0	0.070	0.45
12	0.70	2.43	99.7	0.076	0.42
13	0.71	2.23	112.3	0.081	0.40
14	0.71	2.05	125.0	0.086	0.38
15	0.60	3.90	37.5	0.045	0.64
16	0.52	3.77	38.6	0.048	0.73
17	0.44	3.58	39.7	0.052	0.85
18	0.36	3.29	40.8	0.057	1.01
19	0.28	2.84	41.9	0.065	1.25
20	0.20	2.11	42.9	0.079	1.63
21	0.12	0.77	44.0	0.102	2.36
22	0.60	4.77	29.3	0.045	0.67
23	0.60	4.45	37.8	0.050	0.72
24	0.60	4.17	46.4	0.054	0.77
25	0.61	3.91	54.9	0.058	0.84
26	0.61	3.68	63.4	0.063	0.91
27	0.61	3.47	71.9	0.066	1.00
28	0.62	3.10	89.0	0.074	1.25
29	0.63	2.79	106.1	0.080	1.67
30	0.64	2.53	123.1	0.086	2.51
31	0.64	2.30	140.2	0.092	5.01
32	0.60	4.00	51.6	0.059	0.67
33	0.61	3.62	65.4	0.068	0.63
34	0.61	3.48	70.9	0.071	0.62
35	0.61	3.29	79.1	0.076	0.59
36	0.61	3.00	92.9	0.083	0.56
37	0.62	2.74	106.7	0.090	0.53
38	0.62	2.52	120.4	0.097	0.51
39	0.63	2.32	134.2	0.103	0.48
40	0.53	4.35	38.9	0.053	0.80
41	0.46	4.20	40.1	0.057	0.91
42	0.39	3.98	41.2	0.062	1.06
43	0.32	3.66	42.3	0.069	1.26
44	0.25	3.16	43.4	0.078	1.56
45	0.18	2.34	44.5	0.092	2.04
46	0.11	0.84	45.6	0.115	2.94

Table A3: Parameters for the calculation of $C_{p, i}$ in eqn. (A19).

Parameter	Propane	Propene	$\mathbf{H}_{\mathbf{2}}$	$\mathbf{A r}$
\mathbf{A}	3.847	3.834	2.883	2.5
$\mathbf{B} \times \mathbf{1 0}^{\mathbf{3}}$	5.131	3.893	3.681	0
$\mathbf{C} \times \mathbf{1 0}^{\mathbf{5}}$	6.011	4.688	-0.772	0
$\mathbf{D} \times \mathbf{1 0}^{\mathbf{8}}$	-7.893	-6.013	0.692	0
$\mathbf{E} \times \mathbf{1 0}^{\mathbf{1 1}}$	3.079	2.283	-0.213	0

Table A4: Heat transfer (h) and mass transfer $\left(k_{f}\right)$ coefficients and application of critera for the presence of limitations at the stated reaction conditions.

Experiment	\boldsymbol{h} $\left(\mathbf{J ~ K}^{\mathbf{1}} \mathbf{m}^{\mathbf{- 2}} \mathbf{s}^{\mathbf{- 1}}\right)$	$\boldsymbol{k}_{\boldsymbol{f}}$ $\left(\mathbf{m ~ s}^{\mathbf{- 1}}\right)$	External Criterion $\times \mathbf{1 0}^{4}$	Internal Criterion $\times \mathbf{1 0}^{\mathbf{8}}$
$\mathbf{1}$	5.5	0.007	4.8	0.5
$\mathbf{2}$	7.3	0.010	7.6	1.0
$\mathbf{3}$	9.4	0.013	7.1	1.2
$\mathbf{4}$	11.7	0.019	6.8	1.4
$\mathbf{5}$	14.4	0.029	6.4	1.6
$\mathbf{6}$	17.2	0.048	5.8	1.8
$\mathbf{7}$	20.4	0.107	5.9	2.2
$\mathbf{8}$	7.2	0.008	3.2	0.4
$\mathbf{9}$	9.2	0.008	2.2	0.4
$\mathbf{1 0}$	11.3	0.008	1.6	0.3
$\mathbf{1 1}$	13.7	0.009	1.0	0.3
$\mathbf{1 2}$	16.3	0.009	0.8	0.2
$\mathbf{1 3}$	19.2	0.010	0.6	0.2
$\mathbf{1 4}$	22.2	0.010	0.3	0.1
$\mathbf{1 5}$	5.2	0.007	4.3	0.4
$\mathbf{1 6}$	4.9	0.008	4.3	0.4
$\mathbf{1 7}$	4.8	0.008	5.0	0.4
$\mathbf{1 8}$	4.7	0.008	5.2	0.4
$\mathbf{1 9}$	4.8	0.009	5.9	0.5
$\mathbf{2 0}$	5.6	0.012	5.0	0.5
$\mathbf{2 1}$	12.0	0.028	3.0	0.7
$\mathbf{2 2}$	4.2	0.006	5.0	0.4
$\mathbf{2 3}$	5.0	0.007	8.7	0.9
$\mathbf{2 4}$	5.8	0.008	9.8	1.2
$\mathbf{2 5}$	6.7	0.010	10.4	1.5
$\mathbf{2 6}$	7.7	0.011	9.6	1.5
$\mathbf{2 7}$	8.7	0.013	8.9	1.6
$\mathbf{2 8}$	11.0	0.019	7.6	1.7
$\mathbf{2 9}$	13.4	0.028	7.1	2.0
$\mathbf{3 0}$	16.1	0.047	6.3	2.1
$\mathbf{3 1}$	19.0	0.104	5.8	2.3
$\mathbf{3 2}$	6.6	0.007	6.2	0.9
$\mathbf{3 3}$	8.4	0.008	3.9	0.7
$\mathbf{3 4}$	9.2	0.008	2.9	0.5
$\mathbf{3 5}$	10.4	0.008	1.9	0.4
$\mathbf{3 6}$	12.7	0.009	1.5	0.4
$\mathbf{3 7}$	15.1	0.009	0.9	0.3
$\mathbf{3 8}$	17.7	0.009	0.8	0.3
$\mathbf{3 9}$	20.5	0.010	0.5	0.2
$\mathbf{4 0}$	4.8	0.007	8.0	0.8
$\mathbf{4 1}$	4.6	0.007	8.0	0.8
$\mathbf{4 2}$	4.5	0.008	8.6	0.8
$\mathbf{4 3}$	4.4	0.008	9.5	0.9
$\mathbf{4 4}$	4.6	0.009	9.7	0.9
$\mathbf{4 5}$	5.2	0.011	8.7	0.9
$\mathbf{4 6}$	10.8	0.028	4.6	1.0
			.3	

APPENDIX B

Perego and Peratello described the importance of thermodynamics in that the heat of reaction and maximum conversion determine the limits of the system. ${ }^{[1]}$ We have accordingly analysed the thermodynamics of our case drawing on reference data for propane, propylene and hydrogen as a function of temperature. ${ }^{[2]}$ The specific enthalpy $(\Delta \bar{H})$ as is given in eqn. (B1). The dehydrogenation of propane is strongly endothermic $\left(\approx 129 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ within 723 and 823 K .

$$
\begin{equation*}
\Delta \bar{H}=\left(6.97 \times 10^{-9}\right) \times T^{3}+\left(-2.69 \times 10^{-5}\right) \times T^{2}+\left(3.25 \times 10^{-2}\right) \times T+116.78 \tag{B1}
\end{equation*}
$$

Similarly, the specific Gibbs free energy ($\Delta \bar{G}, \mathrm{~kJ} \mathrm{~mol}^{-1}$) and equilibrium constant ($\left.K_{p}, \mathrm{~atm}\right)$ are given in eqns. (B2) and (B3),

$$
\begin{gather*}
\Delta \bar{G}=(-0.137) \times T+128.102 \tag{B2}\\
K_{p}=\left(1.48 \times 10^{7}\right) \times \exp (-15403 / T) \tag{B3}
\end{gather*}
$$

The equilibrium conversion was finally calculated using eqn. (B4)

$$
\begin{equation*}
\text { Equilibrium Conversion }=\sqrt{1 /\left(1+P / K_{p}\right)} \tag{B4}
\end{equation*}
$$

Figure B1 presents the results. The maximum achievable fractional conversion in the temperature range studied ($723 \mathrm{~K} \leq T \leq 823 \mathrm{~K}$) lies between 0.09 and 0.32 . These results are consistent with the works of Michorczyk et al. ${ }^{[3,4]}$ and Assabumrungrat and co-workers. ${ }^{[5]}$ Moreover, Weckhuysen and Schoonheydt reported that temperatures as high as 870 K are needed to achieve a 50% conversion. ${ }^{[6]}$ Additionally, we studied the effect of the presence of propene and hydrogen (i.e. the reaction products, eqn. (B5)) in the composition of the inlet by using

$$
\begin{equation*}
a \mathrm{C}_{3} \mathrm{H}_{8} \leftrightarrow b \mathrm{C}_{3} \mathrm{H}_{6}+c \mathrm{H}_{2} \tag{B5}
\end{equation*}
$$

where a, b and c are the stoichiometric coefficients and the equilibrium fractional conversion is now calculated from eqns. (B6) and (B7).

$$
\begin{gather*}
{\left[\left(P / K_{p}\right)+1\right] \times s^{2}+\left[\left(P / K_{p}\right) \times(b+c)-(a-d)\right] \times s+\left[\left(P / K_{p}\right) \times(b \times c)-a \times d\right]=0} \tag{B6}\\
\text { Equilibrium Conversion }=\frac{a-s}{a} \tag{B7}
\end{gather*}
$$

Figure B2 shows the change in propane conversion with the propylene-to-propane (b/a) and hydrogen-to-propane (c/a) molar ratios. A unique surface is determined for each reaction temperature. At 700 K , the presence of propylene or hydrogen with propane decreases conversion, which falls to zero whenever b / a and $c / a>1$. An increase in
temperature (to 900 K) favours dehydrogenation where ratios b / a or $c / a>10$ are needed to significantly decrease conversion at 900 K . This is an important outcome since in a typical industrial dehydrogenation operational mode, hydrogen is normally co-fed with propane as a means to supress coke formation. ${ }^{[7]}$ The simultaneous presence of propylene and hydrogen have dramatic consequences where no conversion is observed whenever b / a and $c / a>5$. Our results demonstrate the great impact of the presence of reaction products in the inlet stream, and the importance of this analysis for this reaction.

References:

[1] C. Perego, S. Peratello, Catal. Today 1999, 52, 133.
[2] D. R. Stull, E. F. Westburn., G. C. Sinke, The Chemical Thermodynamics of Organic Compounds, John Wiley \& Sons, Inc., New York, 1969.
[3] P. Michorczyk, J. Ogonowski, React. Kinet. Catal. Lett. 2003, 78, 41.
[4] P. Michorczyk, J. Ogonowski, Appl. Catal. A: General 2003, 251, 425.
[5] S. Assabumrungrat, W. Jhoraleecharnchai., P. Praserthdam, S. Goto, J. Chem. Eng. Jpn. 2000, 33, 529.
[6] B. M. Weckhuysen, R. A. Schoonheydt, Catal. Today 1999, 51, 223.
[7] M. S. Voronetskii, L. P. Didenko, V. I. Savchenko, Russ. J. Phys. Chem. B 2009, 3, 216.

Figure B1: Propane dehydrogenation equilibrium conversion and constant (K_{p}, inset) as a function of temperature (see eqns. (B.3) and (B.4)).

Figure B2: Propane dehydrogenation equilibrium conversion (Z-Axis) as a function of the ratios propylene/propane (X-Axis, left-to-right) and hydrogen/propane (Y-Axis, front-toback). Each surface represents data calculated at different temperatures (see eqns. (B.6) and (B.7)).

APPENDIX C

The following document describes the step-by-step methodology taken to derive the mathematical expressions associated with the mechanistic models 5. Model III is taken here as representative example and it is based on three steps:
(i) Non-dissociative adsorption of propane (step 2).
(ii) Dehydrogenates to propylene (which remains adsorbed on the catalyst surface) releasing molecular hydrogen (step 4).
(iii) Propylene desorption (step 9).

This system can be represented by three reversible processes:

$$
\begin{gather*}
\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{L} \leftrightarrow \mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{L} \tag{C1}\\
\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{L} \leftrightarrow \mathrm{C}_{3} \mathrm{H}_{6}-\mathrm{L}+\mathrm{H}_{2} \tag{C2}\\
\mathrm{C}_{3} \mathrm{H}_{6}-\mathrm{L} \leftrightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{L} \tag{C3}
\end{gather*}
$$

Because these are considered elementary processes, the following rate expressions can be postulated:

$$
\begin{gather*}
r_{2}=k_{2} \times P_{A} \times C_{L}-k_{-2} \times C_{A L} \tag{C4}\\
r_{2}=k_{2}\left[P_{A} \times C_{L}-C_{A L} / K_{2}\right] \tag{C5}\\
r_{4}=k_{4} \times C_{A L}-k_{-4} \times P_{H} \times C_{E L} \tag{C6}\\
r_{4}=k_{4} \times\left[C_{A L}-\left(P_{H} \times C_{E L}\right) / K_{4}\right] \tag{C7}\\
r_{9}=k_{9} \times C_{E L}-k_{-9} \times P_{E} \times C_{L} \tag{C8}\\
r_{9}=k_{9} \times\left[C_{E L}-\left(P_{E} \times C_{L}\right) / K_{9, \text { Desorption }}\right] \tag{C9}\\
K_{\text {eq }}=\frac{P_{E} \times P_{H}}{P_{A}}=K_{2} \times K_{4} \times K_{9, \text { Desorption }}=\frac{K_{2} \times K_{4}}{K_{9}} \tag{C10}
\end{gather*}
$$

In these expressions, r_{j} is the rate of step $\mathrm{j}\left(\mathrm{mol} \mathrm{g}^{-1} \mathrm{~h}^{-1}\right), C_{i}$ is the concentration of species $i\left(\mathrm{~mol} \mathrm{~g}^{-1}\right), P_{i}$ is the partial pressure of species $i(\operatorname{atm}), k_{\mathrm{j}}$ is the kinetic constant of step $\mathrm{j}\left(k_{2}\right.$ in $\mathrm{atm}^{-1} \mathrm{~min}^{-1}, k_{4}$ and k_{9} in $\left.\mathrm{min}^{-1}\right), K_{\mathrm{j}}$ is the equilibrium constant of step j : K_{2} (unitless) and $K_{4}(\mathrm{~atm})$ stand for adsorption and $K_{9, \text { Desorption }}\left(=1 / K_{9}\right.$, atm) for desorption. $A=$ propane, $E=$ propene, $H=$ molecular hydrogen $\left(\mathrm{H}_{2}\right), L=$ free active centre, $A L=$ active centre occupied by adsorbed propane, $E L=$ active centre occupied by adsorbed propene. The balance with regard to the total number of active centres (T) is

$$
\begin{equation*}
C_{T}=C_{L}+C_{A L}+C_{E L} \tag{C11}
\end{equation*}
$$

C.1. Rate limiting propane adsorption (step 2)

When propane adsorption is the slowest step, the following condition applies:

$$
\begin{gather*}
k_{2} \lll<k_{4}, k_{9} \tag{C12}\\
r_{4} / k_{4} \rightarrow 0, r_{9} / k_{9} \rightarrow 0 \tag{C13}
\end{gather*}
$$

In this case, it is possible to express $C_{E L}$ from eqn. (C9) in C_{L}

$$
\begin{equation*}
C_{E L}=K_{9} \times C_{L} \times P_{E} \tag{C14}
\end{equation*}
$$

Similarly for $C_{A L}$ from eqns. (C7) and (C14)

$$
\begin{equation*}
C_{A L}=\left(K_{9} / K_{4}\right) \times C_{L} \times P_{E} \times P_{H}=\left(K_{2} / K_{e q}\right) \times C_{L} \times P_{E} \times P_{H} \tag{C15}
\end{equation*}
$$

The site balance reads then

$$
\begin{gather*}
C_{T}=C_{L}+C_{L} \times P_{E} \times P_{H} \times\left(K_{2} / K_{e q}\right)+C_{L} \times P_{E} \times K_{9} \tag{C16}\\
C_{L}=\frac{C_{T}}{\left[1+P_{E} \times P_{H} \times\left(K_{2} / K_{e q}\right)+P_{E} \times K_{9}\right]} \tag{C17}
\end{gather*}
$$

Substituting (C14, C15 and C17) in (C5), we have

$$
\begin{gather*}
r_{2}=k_{2}\left[P_{A} \times C_{L}-C_{L} \times\left(K_{2} / K_{e q}\right) \times P_{E} \times P_{H} / K_{2}\right] \tag{C18}\\
r_{2}=k_{2} \times C_{L}\left[P_{A}-P_{E} \times P_{H} / K_{e q}\right] \tag{C19}\\
r_{2}=\frac{k_{2} \times C_{T} \times\left[P_{A}-P_{E} \times P_{H} / K_{e q}\right]}{\left[1+P_{E} \times P_{H} \times\left(K_{2} / K_{e q}\right)+P_{E} \times K_{9}\right]} \tag{C20}
\end{gather*}
$$

C.2. Rate limiting surface reaction (step 4)

When the surface reaction is the slowest step, the following condition applies:

$$
\begin{gather*}
k_{4} \lll \ll k_{2}, k_{9} \tag{C21}\\
r_{2} / k_{2} \rightarrow 0, r_{9} / k_{9} \rightarrow 0 \tag{C22}
\end{gather*}
$$

In this case, it is possible to calculate $C_{A L}$ from eqn. (C5) and $C_{E L}$ from (C9)

$$
\begin{align*}
C_{A L} & =K_{2} \times C_{L} \times P_{A} \tag{C23}\\
C_{E L} & =K_{9} \times C_{L} \times P_{E} \tag{C24}
\end{align*}
$$

The site balance is then

$$
\begin{gather*}
C_{T}=C_{L}+C_{L} \times P_{A} \times K_{2}+C_{L} \times P_{E} \times K_{9} \tag{C25}\\
C_{L}=\frac{C_{T}}{\left[1+P_{A} \times K_{2}+P_{E} \times K_{9}\right]} \tag{C26}
\end{gather*}
$$

Substituting (C23, C24 and C26) in (C7), we have

$$
\begin{gather*}
r_{4}=k_{4} \times\left[K_{2} \times C_{L} \times P_{A}-\left(P_{H} \times K_{9} \times C_{L} \times P_{E}\right) / K_{4}\right] \tag{C27}\\
r_{4}=k_{4} \times C_{L}\left[P_{A}-\left(P_{H} \times P_{E}\right) /\left(K_{4} \times K_{2} \times K_{9, \text { Desorption }}\right)\right] \tag{C28}\\
r_{4}=\frac{k_{4} \times K_{2} \times C_{T} \times\left[P_{A}-P_{E} \times P_{H} / K_{e q}\right]}{\left[1+P_{A} \times K_{2}+P_{E} \times K_{9}\right]} \tag{C29}
\end{gather*}
$$

C.3. Rate limiting propene desorption (step 9)

When propene desorption is the slowest step, the following condition applies:

$$
\begin{gather*}
k_{9} \lll \ll k_{2}, k_{4} \tag{C30}\\
r_{2} / k_{2} \rightarrow 0, r_{4} / k_{4} \rightarrow 0 \tag{C31}
\end{gather*}
$$

In this case, it is possible to calculate $C_{A L}$ from eqn. (C5)

$$
\begin{equation*}
C_{A L}=K_{2} \times C_{L} \times P_{A} \tag{C32}
\end{equation*}
$$

Calculation of $C_{E L}$ is possible from eqns. (C7) and (C32)

$$
\begin{gather*}
C_{E L}=\frac{K_{4} \times C_{A L}}{P_{H}}=\frac{K_{4} \times K_{2} \times C_{L} \times P_{A}}{P_{H}} \tag{C33}\\
C_{E L}=C_{L} \times\left(K_{\text {eq }} / K_{9, \text { Desorpption }}\right) \times\left(P_{A} / P_{H}\right) \tag{C34}
\end{gather*}
$$

The site balance is then

$$
\begin{gather*}
C_{T}=C_{L}+C_{L} \times P_{A} \times K_{2}+C_{L} \times\left(K_{\text {eq }} / K_{9, \text { Desorption }}\right) \times\left(P_{A} / P_{H}\right) \tag{C35}\\
C_{L}=\frac{C_{T}}{\left[1+P_{A} \times K_{2}+\left(K_{\text {eq }} / K_{9, \text { Desorption }}\right) \times\left(P_{A} / P_{H}\right)\right]} \tag{C36}
\end{gather*}
$$

Substituting (C32, C34 and C36) in (C9), we have

$$
\begin{gather*}
r_{9}=k_{9} \times\left[C_{L} \times\left(K_{\text {eq }} / K_{9, \text { Desorption }}\right) \times\left(P_{A} / P_{H}\right)-\left(P_{E} \times C_{L}\right) / K_{9, \text { Desorption }}\right] \tag{C37}\\
r_{9}=k_{9} \times C_{L}\left[\left(K_{9} \times K_{e q}\right) \times\left(P_{A} / P_{H}\right)-P_{E} \times K_{9}\right] \tag{C38}\\
r_{9}=k_{9} \times C_{L} \times\left(\frac{K_{e q} \times K_{9}}{P_{H}}\right) \times\left[P_{A}-P_{E} \times P_{H} / K_{e q}\right] \tag{C39}\\
r_{9}=\frac{k_{9} \times K_{e q} \times K_{9} \times C_{T} \times\left[P_{A}-P_{E} \times P_{H} / K_{e q}\right]}{\left[P_{H}+P_{A} \times P_{H} \times K_{2}+\left(K_{9} \times K_{e q}\right) \times P_{A}\right]} \tag{C40}
\end{gather*}
$$

