Voor de beste ervaring schakelt u JavaScript in en gebruikt u een moderne browser!
Je gebruikt een niet-ondersteunde browser. Deze site kan er anders uitzien dan je verwacht.
Master
Computer Science (joint degree UvA/VU)
About the study
  • The tracks

    This two-year Master's programme consists of 4 distinct tracks:    

    • Big Data Engineering
    • Computer Systems and Infrastructure
    • Foundations of Computing and Concurrency
    • Software Engineering and Green IT

    Starting 2024, all tracks consist exclusively of constrained choices.

  • Courses

    All students select one course from each of these constrained choices:

    • Big Data Engineering
    • Computer Systems and Infrastructure
    • Foundations of Computing and Concurrency
    • Software Engineering and Green IT
    • Computer Security
    • Mathematics
    • Societal Perspectives of Computer Science
    • Research Skills

    For the track you follow, you select at least four courses from the respective constrained choice of that track. This leaves room for four electives. You’ll carry out your Master’s project and write your thesis in the second half of your second year.

The tracks
  • Big Data Engineering

    In the internet era, data plays centre stage. We all continuously communicate via social networks, we expect all information to be accessible online continuously, and the world economies thrive on data processing services where revenue is created by generating insights from raw data. These developments are enabled by a global data processing infrastructure, connecting the whole range from small company computer clusters to data centers run by the world-leading IT giants.

    In the Big Data Engineering track you study the technology from which these infrastructures are built, allowing you to design and operate solutions for processing, analysing and managing large quantities of data. This track is part of the joint Master in Computer Science, in which renowned researchers from both VU and UvA contribute their varied expertise in one of the strongest Computer Science programmes available in Europe

  • Computer Systems and Infrastructure

    mputer systems and networks are the core components of all distributed data and information processing systems. Our modern society depends on them. Many computer systems are even not recognisable as such, because they are embedded in larger devices such as cars, airplanes, medical equipment, smart buildings, robotics, and so on.

    The realisation of modern computer systems is greatly complicated by their increasing complexity: these computer systems integrate increasingly more processors, often heterogeneous, sometimes in a distributed context, and possibly also resulting in complex systems-of-systems which can be found in, for instance, the Edge-to-Cloud computing continuum and the high-performance memory-storage system). Meanwhile, computer networks interconnecting these systems are evolving with significantly increased customisability in addition to higher speeds. The energy consumption, sustainability, dependability, and security and privacy of these computer systems and networks also require increasing attention.

  • Foundations of Computing and Concurrency

    This track aims at Computer Science students with a general interest in Computing and Concurrency and the application of formal methods for system design. Computing is a fundamental phenomenon in computer science and we provide courses addressing this field in a wide range: from distributed algorithms to protocol validation, and from term rewriting to logical verification.

    In order to enhance background knowledge and to support the further study of foundational questions some general courses in logic and mathematics are provided as well. Concurrency naturally occurs in the specification of distributed systems, and their analysis, verification and implementation require a systematic approach, aided by formal methods.

  • Software Engineering and Green IT

    Software engineering applies a systematic and quantifiable approach to the development, execution and maintenance of complex software. Green IT is the study and practice of environmentally sustainable computing. The combination of Software Engineering and Green IT in one track provides the students with the instruments necessary to gain a holistic understanding of large-scale and complex software systems, to manage their evolution, assess their quality and environmental impact, quantify their value and sustainability potential, and organise their development in different local and distributed contexts.

    Software engineering and Green IT is a broad and comprehensive field, in which engineering plays an important role, next to social, economic and environmental aspects. The field continually evolves, as the types of systems and the world at large do change as well. The field is being influenced by practices and development paradigms such as outsourcing, global software development, service orientation, smart and pervasive computing, and energy-aware software engineering.